Raman Spectral Study of WCl6 in Al2Cl6 and Chloroaluminate Melts

K. TANEMOTO, G. MAMANTOV,*

Department of Chemistry, University of Tennessee, Knoxville, Tenn. 37996-1600, U.S.A.

and G. M. BEGUN

Chemistry Division, Oak Ridge National Laboratory**, Oak Ridge, Tenn. 37830, U.S.A.

Received September 27, 1982

The chemical and electrochemical behavior of solute species in chloroaluminate melts [1] depends on acid-base properties of the solvent which for the $AlCl_3$ -NaCl system are determined by the $AlCl_3$ / NaCl ratio and temperature. We have been studying the electrochemistry of refractory metals in these media. It has been shown that the electrochemical reductions of Nb(V) [2], Ta(V) [3], and W(VI) [4] are very complex processes and result in the formation of clusters. Raman spectral studies of pentavalent niobium [5] and tantalum [6] have shown that these species exist as XCl_6 , XCl_5 or X_2Cl_{10} (X = Nb, Ta) depending on the melt composition and temperature. Results of a similar study for hexavalent tungsten are presented below.

Experimental

AlCl₃ (anhydrous and iron-free from Fluka AG) was purified by sublimation after being kept molten in contact with high purity aluminum metal (m5N from Alfa) for 24 hours at 210 °C. NaCl (Fisher) was dried for 72 hours at 400 °C under vacuum. Further purification of the equimolar mixture of AlCl₃ and NaCl was carried out by constant current electrolysis [7]. Sublimed AlCl₃ was added to the equimolar melt to prepare acidic AlCl₃-NaCl melts, such as AlCl₃-NaCl (63-37 mol percent $\equiv 63/37$) and 52/48 melts. WCl₆ (from Alfa) was purified by sublimation at 210 °C. Raman cells were made from square Pyrex tubing $(5 \times 5 \text{ mm})$. Salts

**Operated for the U.S. Department of Energy by the Union Carbide Corporation.

Control of the second wells in the second wells in wells in $\square (63/37)$ and $\square (52/48)$ and $\square (32/48)$ and $\square (23/37)$ and $\square (52/48)$ and $\square (23/37)$ and $\square (52/48)$ and $\square (23/37)$ and	B 118 m C 118 m C 209 m ν ₅ 182 ν ₅ ν ₅ 209 m ν ₅ 182 ν ₅	B,C 182 m C 180 m C B 312 w B ~310 w 2 315 w 2 325 w 2 317 m 2 331 w 2	C 348 s C 349 vs C 349 vs C 10 m 2 m 400 m	B ~437 vw B C ~490 w C ~490 w C	ŭg. 1c. Assignments; A, Al ₂ Cl ₆ ; B, Al ₂ Cl ₇ ; C. AlCl4; ν ₁ , ν ₂ , ν ₅ – WCl6. s, strong; m, medium; w, weak; v, very; p, polarized; dp, highly frequency.
WCI ₆ in CHCl ₃ 23 °C 514.5 nm			407 µ1		i, v1, v2, ve
^c WCl ₆ 128 <i>mF</i> AlCl ₃ /NaCl ₅₈ t. 243 [°] C 602.1 nm Ex.	°s vs	2 Z	0 5	ల	. AICI
	118 m ~150 mw	180 m ~310 w	349 vs 410 m	~490 w	8, Al₂Cl <u>7;</u> C
WCI ₆ 134 <i>mF</i> AlCl ₃ /NaCl (52/48) 238 °C 602.1 nm Ex.	C vs	B C	C L	æ U	A, Al ₂ Cl ₆ ;]
	118 m ~150 mw	182 m 312 w	348 s 409 m	~437 vw ~490 w	Assignments;
^b WCI ₆ 130 <i>mF</i> AICI ₃ /NaCI (63/37) 238 °C 602.1 nm Ex.		D			1c. / µuency.
	m B v ₅	m B,(s B	s C s v1	C B M	^c Fig. ion free
	96 ~150	163 311	348 410	437~490	. 1b. excitat
mF Ex.	А А vs	A A A	А 1 ⁴	A	^b Fig 1; Ex.–
[#] WCl ₆ 85 Al ₂ Cl ₆ 215 °C 603.4 nm]	102 s,p 116 s,dp ~150 w	166 w,d f 218 m,p 283 w	340 vs,p 406 m,p	510 w 605 w	^a Fig. 1a. depolarize(

| ~

TABLE I. Raman Frequencies (cm $^{-1}$) for Various WCl $_{\kappa}$ Containing Media with Assignments.

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 1. Raman spectra (excitation ~ 602 nm) of WCl₆ dissolved in (a) Al₂Cl₆ melt. WCl₆ 0.085 F., 215 °C. (b) AlCl₃-NaCl (63-37 mol %) melt. WCl₆ 0.13 F., 238 °C. (c) NaCl-Saturated AlCl₃-NaCl melt. WCl₆ 0.128 F., 243 °C.

were handled in a nitrogen filled dry box with water content below 2 ppm. Raman cells were sealed under vacuum after loading the sample.

A Ramanor HG-2S spectrophotometer (Instruments S.A.) equipped with concave, aberration corrected, halographic gratings was used to record the Raman spectra. This instrument employs a double monochromator, a photomultiplier tube for light detection, and photon counting electronics. Spectra were accumulated with a Nicolet Model 1170 signal averager which allowed repetitive scanning to increase the signal to noise ratio. Spectra were observed at an angle of 90° to the exciting laser light. The monochromator slits were parallel to the plane formed by the exciting and observed Raman light. Polarization measurements were made by rotating the plane of polarization of the exciting laser light by 90°. To excite the spectra an argon ion laser (Spectra-Physics Model 164) was used to pump a tunable dye laser (Coherent Radiation Model 590) containing rhodamine-6G dye.

Results and Discussion

Tungsten hexachloride has an octahedral (O_h) structure [8] with six normal modes of vibration. Of these vibrations, ν_1 (polarized), ν_2 and ν_5 are Raman active, ν_3 and ν_4 are infrared active and ν_6 is inactive. Raman spectra for WCl₆ dissolved in molten Al₂Cl₆, 63/37 AlCl₃-NaCl and the basic

AlCl₃-NaCl_{sat.} melt [1] are shown in Fig. 1. The observed band frequencies, relative intensities, and our assignments are listed in Table I. The Table also includes our results for WCl₆ dissolved in the 52/48 melt and chloroform, as well as data taken from the literature for WCl₆ in liquid Cl₂ [9], in liquid nitromethane [10] and for solid and gaseous WCl₆ [11]. It is apparent that the frequency of the strongest Raman band of $WCl_6(\nu_1)$ is essentially the same (~410 cm^{-1}) regardless of the medium or physical state (solid or liquid). Little can be concluded from the other two Raman active bands, v_2 and v_5 , because they are quite weak and overlap the solvent bands. The relative constancy of the v_1 frequency of WCl₆ compared to spectral shifts with melt composition of 15-40 cm⁻¹ for Ta(V) and Nb(V) species [5, 6], provides evidence that WCl₆ is present as a molecular entity and does not interact significantly with molten Al₂Cl₆ or chloroaluminate melts. Thus its behavior in chloroaluminate melts is similar to that of S_8 and I_2 [12, 13]. The intensity of the 409 cm⁻¹ band of WCl₆ in chloroaluminate melts was found to increase with temperature and with melt acidity (Fig. 1). This behavior is also similar to that observed for S_8 and I_2 in molten chloroaluminates [12, 13].

In summary, the Raman results demonstrate that the predominant form of tungsten (VI) chloride in molten Al_2Cl_6 and $AlCl_3$ -NaCl melts is WCl_6 and that the WCl_6 solubility increases with increase in the Lewis acidity of the solvent and with increasing temperatures.

Acknowledgement

This work was supported by the National Science Foundation Grant CHE77-21370, and the Office of Basic Energy Sciences, U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.

References

- G. Mamantov and R. A. Osteryoung, 'Characterization of Solutes in Non-Aqueous Solvents, G. Mamantov, Ed., Plenum Press, New York, 1978, pp. 223-249.
- 2 G. Ting, K. W. Fung and G. Mamantov, J. Electrochem. Soc., 123, 624 (1976).
- 3 L. E. McCurry, G. Mamantov, N. J. Bjerrum, F. W. Poulsen and J. H. von Barner, Proceedings of the Symposium on High Temperature Metal Halide Chemistry, D. Cubicciotti, Ed., The Electrochemical Society, Princeton, New Jersey, 1978, pp. 421-427.
- 4 D. L. Brotherton, Ph.D. Thesis, Chemistry Department, University of Tennessee (1974).
- 5 R. Huglen, G. Mamantov, G. P. Smith and G. M. Begun, J. Raman Spectrosc., 8, 326 (1979).
- 6 R. Huglen, F. W. Poulsen, G. Mamantov and G. M. Begun,

Inorg. Chem., 18, 2551 (1979).

- 7 L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc., 121, 212 (1974).
- 8 R. A. Walton, Chem. Commun., 1385 (1968).
- J. A. Creighton, Chem. Commun., 163 (1969).
 T. L. Brown, W. G. McDugle, Jr., and L. G. Kent, J. Am. Chem. Soc., 92, 3645 (1970).
- 11 W. Van Bronswyk, R. J. H. Clark and L. Maresca, Inorg. Chem., 8, 1395 (1969).
- 12 R. Huglen, F. W. Poulsen, G. Mamantov, R. Marassi and G. M. Begun, Inorg. Nucl. Chem. Letters., 14, 167 (1978).
- 13 K. Tanemoto, G. Mamantov, R. Marassi and G. M. Begun, J. Inorg. Nucl. Chem., 43, 1779 (1981).